A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
نویسندگان
چکیده
The energy balance of Phaeodactylum tricornutum cells from photon to biomass have been analysed under nutrient-replete and N-limiting conditions in combination with fluctuating (FL) and non-fluctuating (SL) dynamic light. For this purpose, the amount of photons absorbed has been related to electrons transported by photosystem II, to gas exchange rates, and to the newly formed biomass differentially resolved into carbohydrates, proteins, and lipids measured by means of Fourier transform infrared (FTIR) spectroscopy. Under high nutrient conditions, the quantum efficiency of carbon-related biomass production (Phi(C)) and the metabolic costs of carbon (C) production were found to be strongly controlled by the light climate. Under N-limited conditions, the light climate was less important for the efficieny of primary production. Thus, the largest range of Phi(C) dependent on the nutrient status of the cells was observed under non-fluctuating light conditions which are comparable with stratified conditions in the natural environment. It is evident that N limitation induced pronounced changes in the composition of macromolecular compounds and, thus, influenced the degree of reduction of the biomass as well as the metabolic costs of C production. However, Phi(C) and the metabolic costs are not predictable from the photosynthesis rates. In consequence, the results clearly show that bio-optical methods as well as gas exchange measurements during the light phase can severely mismatch the true energy storage in the biomass especially under high nutrient in combination with non-fluctuating light conditions.
منابع مشابه
Relationship between nutrients and phytoplankton biomass based on chlorophyll prediction model in Zribar Lake of Kurdestan, a case study
Zaribar Lake is a little shallow lake in Kurdistan province of Iran and it is faced to eutrophication.The study of phytoplankton biomass-nutrient relations is important in eutrophication management and there are many empirical models to predict phytoplankton biomass (chlorophyll a) based on nutrient (nitrogen and phosphorous) amounts in the lake. Evaluation of these empirical models and compar...
متن کاملEstimation of economic value of carbon sequestration at Inchehbrun salt lands, Golestan province
In this study, the economic evaluation of carbon sequestration in plant biomass and soil under three types of livestock grazing intensity was investigated. Three area under light, medium and high grazing intensities in the Inchehbrun salt lands of Golestan province were selected. Soil and plant samples were taken in a systematic-random method. Three 100 meters length parallel transects were ins...
متن کاملSite assessment for industrial mass cultivation of microalgae: case studies from Persian Gulf and Oman Sea coastal areas
Providing enough microalgae biomass is required for various applications in sectors such as food, medicine and energy. The biomass resources such as land, water, nutrient and carbon dioxide are essential in cultivation feasibility study for biomass production as well as cost benefits. The aims of this research is therefore, site assessment and prioritization of potential site locations, carbon ...
متن کاملTechno-economic Analysis of Small Scale Electricity Generation from the Lignocellulosic Biomass
In this study, the techno-economic analysis of lignocellulosic biomass conversion to electricity in a small scale power plant was conducted. The proposed process is based on the thermal pathway of electricity production from a carbon content feed. Woods, forest and agricultural residues were considered as the biomass feed, which are available extensively in Iran. Besides, the process benefits n...
متن کاملBiofixation of Carbon Dioxide from Kerosene Combustion and Biomass Production by Spirulina
Background and purpose: CO2 is the main cause of greenhouse effect. Previous studies have shown that CO2 in methane and coal flue gas can lead to microalgae growth. The aim of this research was to study the CO2 biofixation by Spirulina and injecting kerosene flue gas. Materials and methods: A photo bioreactor was fabricated in which kerosene flue gas and air were separately injected. The ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 58 8 شماره
صفحات -
تاریخ انتشار 2007